Start Technik Aufwindarten
26 | 05 | 2017
Aufwindarten

Thermischer Aufwind

Diese Aufwinde entstehen, wenn Luftpakete aus wärmerer Luft wie ihre Umgebungsluft vom Erdboden aufsteigen. Daher werden

sie auch thermische Aufwinde oder kurz "Thermik" genannt. Allerdings muss noch eine zweite wichtige Voraussetzung erfüllt sein, damit wirklich nutzbare Aufwinde entstehen können: die labile Luftschichtung. Der Wirkmechanismus dieser Aufwinde und die Bedeutung der Luftschichtung wird bei einem kurzen Ausblick auf die Grundlagen der Physik deutlich: Beim Aufstieg in die Höhe dehnt sich die Luft aus, da der Luftdruck abnimmt. Dadurch nimmt gleichzeitig die Temperatur der aufsteigenden Luft ab. Wenn die Umgebungstemperatur mit zunehmender Höhe gleich bleibt, hat die aufsteigende Luft aufgrund ihrer Abkühlung in genügend großer Höhe schließlich die gleiche Temperatur wie die Umgebung. Dann hört die Steigbewegung auf. Eine solche Temperaturverteilung heißt stabile Schichtung und ist ungeeignet für die Entwicklung von Thermik. Da sich die Luft während des Aufstiegs zwischen 0,6 und 1 Grad je hundert Meter abkühlt, würde eine anfangs um 10 Grad wärmeres Luftpaket nur 1000 Meter höher steigen. In Wirklichkeit treten derart extrem große Temperaturunterschiede praktisch nicht auf. Selbst ein großes Kraftwerk mit seinen Kühltürmen würde nur einen wenige hundert Meter hoch reichenden Aufwind erzeugen können. Trotzdem gelingt es Vögeln und auch Segelflugzeugen in der Thermik viel höher zu steigen als nur wenige hundert Meter.
Nun weiß zumindest jeder, der schon einmal in den Bergen war, dass die Umgebungstemperatur mit zunehmender Höhe normalerweise recht schnell abnimmt. Wesentlich ist nun, wie schnell genau die Umgebungstemperatur mit zunehmender Höhe fällt. Wird es schneller kälter, als die aufsteigende Luft während ihres Steigens an Temperatur verliert, bleibt die aufsteigende Luft trotz ihrer Abkühlung immer wärmer als die Umgebung. Dann steigt die Luft immer weiter, unter Umständen mehrere tausend Meter hoch. Wenn eine solche Aufstiegsbewegung erst einmal begonnen hat, erfasst sie auch die umgebende Luft, die anfangs gar nicht wärmer war. Indem diese in höhere Lagen gelangt und dabei langsamer abkühlt, ist auch diese Luft schließlich wärmer als die Umgebung und trägt zum Aufwind bei. Aus dem aufsteigenden kleinen Luftpaket ist eine Art Schlauch geworden, ein so genannter Bart.

Diese Temperaturverteilung der Atmosphäre nennt man eine labile Schichtung. Die labile Schichtung ist der tatsächliche Motor der thermischen Aufwinde und entsteht zum Beispiel, wenn kalte Luft in ein Gebiet einfließt, in dem der Boden durch mehrtägigen Sonnenschein erwärmt wurde. Dann erwärmt sich diese Luftmasse allmählich von unten her bis eine labile Schichtung erreicht ist. Die thermischen Aufwinde führen dann solange zu einem Temperaturausgleich zwischen unteren und oberen Luftschichten, bis wieder eine stabile Schichtung entstanden ist.

Die Aufwinde benötigen bei labiler Schichtung dann nur noch einen kleinen Auslöser, um sich zu entwickeln. Dies kann eine punktuelle Erwärmung durch Sonnenschein sein, z.B. ein Fabrikdach. Oft reicht aber auch schon ein Traktor, der über ein Feld fährt, oder auch nur eine Unregelmäßigkeit in der Landschaft wie eine Waldkante, ein kleiner Hügel oder ein Sendemast.

Die Segelflieger versuchen nun, durch enge Kreise möglichst im Zentrum dieser Aufwinde zu bleiben. Wenn das obere Ende des Aufwindes erreicht ist, fliegt man mit hoher Geschwindigkeit solange in Richtung der geplanten Strecke, bis die Höhe abgeglitten ist und man im nächsten Bart wieder in die Höhe steigt.

Hangwind

Ein Wind, der in der Ebene horizontal weht, wird durch ein Hindernis nach oben abgelenkt. Im aufsteigenden Teil des Luftstromes kann sich ein Segelflugzeug nach oben tragen lassen. Solche Aufwinde reichen mitunter doppelt so hoch wie das Hindernis. Der Hangaufwind war lange Zeit die einzige bekannte Energiequelle für längere Flüge. Er ist auch die beständigste.

Leider hat der Hangaufwind einige wesentliche Nachteile. Erstens ist er nur an deutlich markanten Stellen anzutreffen, und zweitens ist die Höhe, die man mit ihm erreichen kann, sehr begrenzt. Er ist außerdem abhängig von Windrichtung und -geschwindigkeit.

Wellenaufwind

Beobachtet man einen schnell fließenden Gebirgsbach, in dem ein großer Stein oder Fels liegt, so bemerkt man oft folgende Situation:
Beim überfließen des Hindernisses bildet das Wasser einen Buckel und hinter dem Hindernis eine Art Tal. Etwas dahinter folgt ein weiterer Buckel, obwohl sich an dieser Stelle kein Hindernis mehr befindet. Was man dort beobachtet, ist eigentlich nichts anderes als eine Welle, nur dass diese sich immer an der gleichen Stelle befindet, da sich anstelle der Welle das Wasser fortbewegt.

In der Atmosphäre kann genau das gleiche Phänomen auftreten, vorausgesetzt, die Luftmasse verhält sich ähnlich wie das strömende Wasser, was bei einer stabilen Luftschichtung tatsächlich der Fall ist. An die Stelle der Steine treten Bergketten, die quer zur Windrichtung liegen. Insofern sind die Verhältnisse ganz ähnlich wie beim Hangwind. Befindet sich nun genau dort, wo die Nachschwingung wiederum einen Wellenberg hat, eine weitere Bergkette, wird dieser Wellenberg durch einen Resonanzeffekt deutlich höher sein, als der über der ersten Bergkette. Im Unterschied zum Hangwind findet man in bei Wellenaufwinden die besten Steigmöglichkeiten nicht an der ersten Bergkette, sondern erst dahinter, also bei der zweiten oder dritten Welle. Daher spricht man auch von so genannten Leewellen (Lee = Windabgewandte Seite).

Das Vorhandensein von Bergen ist nun nicht, wie man meinen könnte, unbedingt erforderlich für die Entstehung von Wellenaufwinden. Auch andere Erscheinungen in der Atmosphäre können solche Aufwinde erzeugen, man spricht dann von Scherungswellen oder auch thermischen Wellen.

Wellenaufwinde können bis in die Stratosphäre reichen. Dabei werden Steiggeschwindigkeiten von mehr als 15 m/s erreicht, wie sonst nur im Gewitter, aber ohne die gefährlichen Turbulenzen. Steigt man einmal in einem Wellenaufwind empor, kann man nur an den Instrumenten erkennen, dass das Segelflugzeug steigt.

 
Wer ist online
Wir haben 14 Gäste online
Wetter
Das Wetter heute
Zähler
Heute135
Gestern152
Woche636
Monat3482
Gesamt310911